登陆注册
15690300000017

第17章 指数函数(1)

【教学目标】

一、使学生掌握指数函数的概念、图像和性质。

1.能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。

2.能在基本性质的指导下,用列表描点法画出指数函数的图像,能从数形两方面认识指数函数的性质。

3.能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图像画出形如f(x)=ax+m的图像。

二、通过对指数函数的概念图像性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思维方法。

三、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

【教学建议】

一、教材分析

(1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

(2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图像和性质。难点是对底数a在a>1和 0<a<1时,函数值变化情况的区分。

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

二、教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是f(x)=ax的样子,不能有一点差异,诸如y=3·22,y=(12)x-1 等都不是指数函数。

(2)对底数a的限制条件的理解与认识也是认识指数函数的重要内容。如果有可能尽量让学生自己去研究底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于指数函数图像的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图像的存在范围、大致特征、变化趋势的大概认识后,以此为指导再列表计算,描点得图像。

【教学设计示例】

(第六节)课题指数函数

教学目标:

1. 理解指数函数的定义,初步掌握指数函数的图像,性质及其简单应用。

2. 通过指数函数的图像和性质的学习,培养学生观察、分析、归纳的能力,进一步体会数形结合的思想方法。

3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点:

重点是理解指数函数的定义,把握图像和性质。

难点是认识底数对函数值影响的认识。

教学用具:

投影仪

教学方法:

启发讨论研究式

教学过程:

一、引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数——指数函数。

(板书)1.6.指数函数

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数x与y之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

由学生回答:y与x之间的关系式,可以表示为 y=2x。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为y米,试写出y与x之间的函数关系。

由学生回答:y=(12)x。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为指数函数。

二、讲授新课

(一)指数函数的概念。(板书)

1.定义:形如f(x)=ax(a>0,a≠1)的函数称为指数函数。(板书)

教师在给出定义之后再对定义作几点说明。

2.几点说明。(板书)

(1) 关于对a的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若a<0会有什么问题?如a=-2,此时x=12,x=14等在实数范围内相应的函数值不存在。

若a=0对于x≤0,a2都无意义,若a=1则1x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定a>0且 a≠1。

(2)关于指数函数的定义域。(板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,ax也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为 R。扩充的另一个原因是因为使它更具代表更有应用价值。

(3)关于是否是指数函数的判断。(板书)

刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。

(1) y=πx, (2) y=0.3x2, (3)y=(3)-3x(4) y=2·(34)2x, (5) y=1x4+14。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3) y=(3)-3x可以写成y=(39)x,也是指数图像。

最后提醒学生指数函数的定义是形式定义,就必须在形式上一模一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图像,再细致归纳性质。

3.归纳性质。

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数 y=2x

1.定义域 :R

2.值域:(0,+∞)

3.奇偶性 :既不是奇函数也不是偶函数

4.截距:在x轴上没有,在y轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图像存在的大致位置)对第3条还应会证明。对于单调性,建议找一些特殊点,先看一看,再下定论。对最后一条也是指导函数图像画图的依据。(图像位于x轴上方,且与x 轴不相交。)

在此基础上,教师可指导学生列表、描点。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图像的变化趋势(当x越小,图像越靠近x轴,x 越大,图像上升的越快),并连出光滑曲线。

(二)图像与性质(板书)

1.图像的画法:性质指导下的列表描点法。

2.草图:

当画完第一个图像之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 a>0且a≠1 ,取值可分为两段)让学生明白需再画第二个,不妨取y=(12)x为例。

此时画它的图像的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图像变换的方法更为简单。即y=12x=2-x与y=2x图像之间关于y轴对称,而此时y=2x的图像已经有了,具备了变换的条件,让学生自己做对称,教师借助计算机画图,在同一坐标系下得到y=12x的图像。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如a=3,a=14的图像一起比较,再找共性。)

由于图像是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:几何角度

a>0向x轴正,负方向无限延伸图像均在x轴的上方不关于原点和y轴对称图像在(-∞,+∞)是上升的过点(0,1)

第一象限内的图像在y=1的上方

第二象限内的图像在y=1的下方

代数角度

定义域为(-∞,+∞)值域为(0,+∞)既不是奇函数也不是偶函数在(-∞,+∞)上是增函数当x=0时,y=1.

当x>0,时y>1

以上内容学生如说不齐,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个0<a<1的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3.性质。

(1)无论a为何值,指数函数f(x)=ax都有定义域为R,值域为(0,+∞),都过点(0,1)。

(2) a>0时, f(x)=ax在定义域内为增函数,0<a<1 时,f(x)=ax 为减函数。

同类推荐
热门推荐
  • 薄荷情香

    薄荷情香

    海浪搁浅的时光,风雨吹打的回忆,飞沙掀起的谎言。世间最美的风景莫过于和孩子看着晨雾错落有致的弥漫着天空,沉浸着花香,悄悄的看着细雨缠绵,霏霏雨声索绕人心。记忆的沧桑,回忆的无力,回首的疼痛。记得五年前,一场大火,一朵美丽的“薄荷”从而凋谢。记忆的花海,时光的匆匆,早已物是人非。“子昂!记着,以后沈阿姨才是你的母亲”父亲的冷淡,继母的刁难,还有那亲生母亲的归来。一所青藤花园围绕着五年前死亡的血色,一抹薄荷清香缠绵着记忆的伤痕。青春成长路上的涅槃,冷漠男孩心里的旭光,寒心父亲时光的答案,弃子母亲最后的救赎。这个夏天注定不平凡。
  • 校草甜宠纯情少女

    校草甜宠纯情少女

    想安安静静的生活,却碰到了强势霸道的美男殿下,温柔深情的校草同桌,调皮花心的恶魔王子。眼见三个姐妹自身难保,惜沫泪奔了。
  • 胭脂撩香

    胭脂撩香

    一缕异世孤魂重生古代,却是个嫁人做妾的命;一入豪门深似海,自在逍遥是路人;谁说无权无势就合该被人欺负?看她内斗正妻、宠妾、四房五房;外斗陷害家门的阴险对手,彪悍跋扈又如何?就是要撕掉你们那藏在金玉堆里的肮脏面孔。*****新人上路请多关照*****每天保底一更~除了断网断电什么的坚决不断更!各位书友大大们请多多支持~虎摸摸-。-
  • 某人渣的第三新东京生活录

    某人渣的第三新东京生活录

    曾经我也是一个节操满满的好青年,直到我遇到了十万红白既然已经崩坏向了怎么能仅限于暴君和补完要崩就要崩的彻底!位面扭曲设定崩坏神马的不必在意!11男必须死!只有慎二得救我不甘心啊!以上PS:感谢支持,如有不适请使用右上角红色救生舱。PS2:投票决定剧情走向神马的我完全不知道……PS:自古更新是大敌……
  • 三妹修仙

    三妹修仙

    三妹的武力,非常强,非常强,非常强;其实做个好人也得有强大的武力去支撑;做好人,是因为心里高兴,无关对方感谢与否;这是个三观非常正的妹子,也是非常任性的妹子;本人的工作非常非常非常的忙,尽量保持日更,最迟隔日更,喜欢的亲可以收藏支持!
  • 温柔校草爱上你抓住不放

    温柔校草爱上你抓住不放

    想见的第一次初吻没了,第二次告诉了她原因“当时有人抓我。”女主相信了,成了同桌,感情慢慢的出来了,[女主男主很专一,内心健康,还是处]本文已完结
  • 重生回到五岁时

    重生回到五岁时

    此篇乃重生文,一个90后在社会打拼9年有余,颓废死气沉沉的人生没有一点青春、阳光的气息,经历了种种,对现实社会失望到后面的无望,突然,她在找工作的途中意外丧生,本以为是解脱,却意外回到自己五岁时,原以为能凭着对前世的先知可以一路顺利发展自己的商业帝国,却接二连三发生不可思议的事情,一向淡然处之的女主该怎么面对这一切.....前生今世....原来前世的意外死亡也不是偶然....原来她除了奶奶之外还有那么多亲人...神秘的背后主使....恨透了自己家的同村人老艾...这一切..一切..该怎么办【本书一万字A签,可以放心跳坑,日更保底4000(一月份起)】【求推荐票,推荐票,推荐票,重要的事情说三遍】【喜欢的朋友请收藏,欢迎捉虫、点评和毒舌】
  • 笨小孩成长记

    笨小孩成长记

    在迷惘的人生里,曾经多少次感叹青春逝去的残酷而无力挽回,用一部原创小说,记录我逝去的青春,安放那彷徨不安的灵魂。
  • 小嫡妻

    小嫡妻

    他是云门主人,俊美妖娆,心狠手辣,豢养三千娈童,她是太傅遗孤,留在云门六年,背负仇恨隐忍而活,一次决裂,在大漠藏匿三年之久。找寻唯一的胞弟,他却早她一步,将其弟带入云门!他请君入瓮,她只身前往!却在交锋中深爱!重回中原时,便是她报仇时!
  • 南粤剿虫记

    南粤剿虫记

    这是一个记录南粤地区关于蛇虫等毒物的民间传奇故事。