登陆注册
20318800000032

第32章 生物大发明(6)

1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。

有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的“B型”DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来,心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。

克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。

他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。

有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤—胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤—胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。

经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖—磷基团交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。

下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。

DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。

器官移植术的发明

人的死亡常常是因为某些器官受到了不可逆转的致命伤害,功能丧失。如肾脏由于得了肾炎等严重的肾病,使肾功能全部丧失而不能生成尿;还有冠心病、肝癌等最终都可造成器官的功能丧失而死亡。所以,多年来人类一直梦想能通过器官移植来延长寿命。

在古代玛雅人的典籍中,就曾有更换内脏以求起死回生的记载。我国的《聊斋志异》中也有陆判“易心换头”的描述。的确,如能摘除丧失功能的器官,换之以健康的异体器官,这对抢救某些危重患者的生命来说,不仅是一种妙法,而且是一种极其重要的途径。近几个世纪以来,人类曾在动物身上进行器官移植的各种实验,但却屡遭失败。而在人体进行器官移植,大约是在600年前,印度的外科医生用臂部的皮瓣造鼻成功了。1905年,出生于法国的美籍医生卡雷尔(1873~1944)研究了器官移植,他当时认为人体器官离开机体仍然可以存活,任何人体器官都可以取下培养,然后移植到他人身上,这是把人体看成是像机器一样的系统。后来发现了人体的排异作用,证明这是不完全对的,但毕竟器官移植受到人们的关注。在1922年~1933年间,苏联人费拉托夫(1875~1959)提出了组织相容性理论之后,器官移植的成活率提高了。

20世纪40年代,美国遗传学家斯内尔选中了“老鼠组织移植与排斥”这样一个冷门课题,开始致力于异体器官移植和组织“排异”现象的研究。他与英国科学家高拉合作,在美国缅因州巴尔港杰克逊实验所,日复一日,年复一年地探索着。终于在1948年,他们公布了一个重要发现:老鼠体内有一种特殊的系统,可以成功地识别自身组织与异己组织,对自身组织能够接受、相容,对异己组织不能相容,给予排斥。这就是所谓“组织相容性抗原系统”。老鼠的组织相容性抗原系统由其遗传基因决定,这种基因被称为“H2系基因”。

到底怎样才能预先知道两只老鼠的组织是否相容,是否发生排斥呢?斯内尔首创了一种试验方式——H2型试验。它证实了用不同的H2系基因进行组织移植就会产生“排异”的现象,从而首次揭示了器官移植排异机制,为人类器官移植开辟了道路。

要使人体器官移植获得成功,则必须查明人体组织相容性抗原系统,确定有关基因。而且还要找到一种能鉴定人体组织相容性的试验方法。

1958年,法国免疫学家多塞研究了患者多次接受输血的反应后,首次发现了人体组织相容性抗原。接着,他创立了人体组织细胞相容理论,又开创了迅速方便的人体器官移植试验法——鉴定异体组织是否相容的HLA组织分类血液试验法。多塞的试验方法简便可靠,很快被进行器官移植的医生们采用,大大推进了器官移植的临床实践和深入研究。

由于斯内尔、多塞在研究器官移植方面取得了重大成果,他们获得了1980年诺贝尔生理学和医学奖。

在科学家经过了多年探索和临床试验之后的今天,器官移植术造福于人类已成为现实。

肾脏移植是开展得最早、最多的一种器官移植。据统计,到1977年,全世界已有13000多人通过肾脏移植获得了新生。目前仅在美国,每年就要进行数千例肾脏移植手术。

世界上最早的一例肾脏移植手术是1954年在美国波士顿的一家医院进行的。病人24岁,患了晚期肾炎,从他的孪生兄弟身上移植了一个肾脏,术后没有产生排斥反应,病人生命得到了延长。从移植的效果看,活体肾比尸体肾好,近亲供肾效果更好。

世界上第一例心脏移植手术是1967年12月3日,在南非开普敦的一家医院里,以巴纳德为首的手术小组,为55岁的华希坎斯基移植了心脏,手术相当成功,但抗排斥反应药破坏了这位病人身体的免疫功能,18天后该病人患肺炎死亡。

在1967年12月~1969年6月间,全世界共做了103例心脏移植手术。其中3/4的病人在手术后3个月内先后死亡。1979年,瑞士一家药厂研制成了一种可选择性地抑制免疫系统的新药——环孢素,使所有器官移植手术成功率大大提高。第一年存活率上升到79%,术后存活6年存活率达60%。英国医学教授亚库布从1980年起到现在,已做了1000多例心脏移植手术。手术后存活一年的存活率超过90%,存活五年的存活率约为80%,其中有600多人至今还活着,最长的已经活了20多年。1985年,美国一对“换心”男女,35岁的加里·韦勒普和36岁的苏姗·斯特菲,经医生同意结为恩爱夫妻。这表明医学技术的进展已逐渐克服了困难,能够进行更安全和更成功的心脏移植手术了。

人类在近40年内已成功地进行了肾脏移植、心脏移植、肝脏移植、胚胎移植、骨髓移植、胰腺移植、脾脏移植、骨骼移植等手术,但脑的移植还未实现。脑可以移植吗?不要说头颅受了致命伤后的更换,就是痴呆、疯傻人的头颅再换,也是人们所殷盼的。

20世纪60年代末期,美国医学博士罗伯特·荷华,曾提出过《人头移植的手术方案》,供同行们讨论。一些人认为,他是异想天开,因为即使换头成功,由于神经切断后难以连续,也会导致颈部以下的身体瘫痪。这时,罗伯特·荷华用老鼠做实验,也连连失败。因神经连接不好,换了头的老鼠只会摇头,不会动弹。后来又进行“双头鼠”移植,即原来的鼠头不割下来,再另外移植一鼠头上去,一鼠两头,获得成功。继而“双头狗”又在70年代末期出现。“双头狗”的两个头都会叫,都会争食,但移植上去的头仍不如原来的头灵敏。

同时期,一些科学家还做了猴头移植术。1986年,美国著名脑外科专家韦特与别人合作,首次在世界上移植猴头成功,但这猴子仍不如天然猴子灵巧。

美国有这样的实验报告:取出健康的老鼠的脑组织移植给患糖尿病的老鼠,当移植的脑组织刚一成活,便恢复了分泌激素的功能,结果老鼠的糖尿病消失了。

瑞典、墨西哥和中国是世界上最先成功地在人体中进行脑内移植手术的三个国家。脑内移植手术的成功使科学家们相信,将来人脑也可移植。

自20世纪70年代以来,我国的器官移植也取得了重大进展。移植总数已超过5000例,各类器官的移植已超过18种,其中以肾脏移植最为成功。

随着医学科学的发展,将会给千千万万因器官损伤而可能死亡的人带来福音。人类的梦想,必然能够实现。

人工合成蛋白质

1965年,世界上第一个人工合成的蛋白质——结晶牛胰岛素在我国诞生了。这项科研成果震动了中外科学界。在国内,国家科委专门组织了我国一些著名科学家对这项工作进行了严格鉴定,并给予了高度的评价。在国外,受到一些著名科学家的高度赞扬。有的认为,从简单的氨基酸用人工方法合成具有全部生物活力的蛋白质,中国的胰岛素是惟一令人信服的例子;有的表示,人工合成胰岛素在科学技术先进的国家还没有做到的时候,中国首先做到了,令人十分钦佩。英国电视广播还为这件事组织过一次电视专题节目,专门报道中国的胰岛素人工合成。美国销路最广的《纽约时报》也以整版篇幅详尽地介绍了我国的这一科学成就。

胰岛素是一种蛋白激素。从结构上看,它是一种蛋白质,从功能上看,它是调节生物体内新陈代谢的一种激素。它是由胰腺中的胰岛细胞分泌的,能促进人和动物对葡萄糖的利用。如果胰岛分泌的胰岛素过少,体内葡萄糖的氧化和储存就会发生障碍,葡萄糖在血液里的含量就会升高,导致尿中有过多的糖分排出,这就是糖尿病。据统计,全世界糖尿病患者有1亿多人,糖尿病患者的血液含糖量过多,血液循环系统受到破坏,伴随而来的是坏疽病和心脏病,肾功能下降,眼睛失明等。它是严重危害人类健康的一种疾病。1921年7月30日,班丁和拜斯特发现了胰岛素并从狗的胰腺里提取出宝贵的胰腺抽提液,后来又从猪、羊、牛的胰腺中提取出胰岛素,并于1922年应用于临床治疗。1926年,纯化的胰岛素已能做成结晶,一些糖尿病患者的生命得到了延续。但由于胰岛素数量太少,价格昂贵,一般的人得了糖尿病就等于被判了死刑。所以,人们梦想着有一天能用人工的方法合成胰岛素。

人工合成蛋白质开始于100多年以前。德国的一位多才多艺的化学家维勒,从小喜欢诗歌、美术和收藏矿物标本。在各门自然科学中,他最喜欢化学,23岁获医学博士学位。1824年春天,维勒在进行金属氰化物和氨水的研究时,在实验中意外地发现,在氰化物和氨水相互作用时,经水浴加热,冷却后容器底部出现了一些白色沉淀物。这是什么物质呢?维勒思索着,推测着。但是,维勒的眼光是敏锐的,思维是敏捷的,他不凭猜测下结论,在奇特的实验现象面前,他提出了许多假设,设计了许多实验,反复实验,反复研究,经过4年的艰苦努力,终于查明金属氰化物和氨水相互作用,首先生成的物质是氰酸铵,在一定条件下,就会转化成尿素(一种有机物)。

维勒的学生柯尔伯继承了维勒的事业,着手进行用最基本的元素合成有机物的实验。他顽强拼搏了7年,终于在1845年成功地用空气、氢气、氯气、碳等无机物合成了有机物醋酸。这再一次证明了,用无机物能合成有机物。

接着,一系列的有机物如酒石酸、柠檬酸和苹果酸等都陆续用人工的方法合成了。1854年德国化学家且泰罗合成了脂脑,1861年俄国化学家布特列洛夫合成了糖类。

同类推荐
  • 青少年应该知道的岩石和矿物质

    青少年应该知道的岩石和矿物质

    岩石是构成地壳和地幔的物质基础,是天然产出的县稳定外型的矿物或玻璃集合体。岩石随处可见,是大自然的杰作。它不仅可以用作建材,而且还可以用来提炼金属、制作饰品等。自然界中有很多东西都能带给我们美的享受。小时候捡到一块美丽的石头,也能让我们欢喜许多天,在看红楼梦的时候我们都在羡慕贾宝玉身上那块与生俱来的通灵宝玉,这些能给我带来欢乐的东西都来自岩石大家族,岩石家族是个庞大的群体。那么岩石有什么特性?又是如何分类?……
  • 科学伴你行-不朽的发明

    科学伴你行-不朽的发明

    本书从各个角度介绍了有关发明的故事,内容深入浅出,运用伟大的发明,激励青少年开拓创新,并有利于中小学生更好地了解这些知识。
  • UFO档案

    UFO档案

    他们来自何方,他们目的何在,他们到底是谁,这些神秘莫测的访客总是不期而至,与人类共同分享着天空。回顾历史,我们惊讶地发现――UFO一直与我们同在。早在人类历史上有文字记载之时,就有过对不明飞行物的描述。UFO――成为人类延续时间最长的谜题之一,它们的出现也许并非偶然,如果说它们是媒介时代的科幻作品,那么,古代的遗迹与文献中又为何频频出现它们的身影。当我们重读人类的文明史,静静地仰望着星空的时候,我们不禁自问我们是宇宙中惟一的生命。还是接受过天外来客的礼物。
  • 科学我知道-Why海洋

    科学我知道-Why海洋

    本书主要讲述是:海洋的概念、海洋的形成、世界大洋如何划分、海洋中各岛屿的形成等。
  • 开阔眼界的海洋故事

    开阔眼界的海洋故事

    众所周知,陆地上的动物是要睡觉的,尽管它们睡觉的姿态和方法不同。那么,海洋中的动物是不是也要睡觉呢?回答是肯定的.也要睡觉,它们睡觉的姿态和方法就更特别了。
热门推荐
  • 相公,请你将就一下!

    相公,请你将就一下!

    亲们,出云由于身体原因,只能匆匆结束故事,很无奈哦,真的很可惜,这个故事还没有讲完,其实才刚刚开始,在此,出云对各位支持云的亲们深深鞠躬致歉,挥手泪别,不过,偶还会回来的,卓玛也会回来的,呜呜呜呜~~~~(&gt_<)~~~~据说她是一位婀娜多姿的美丽少女,却性格强悍,嗜武成性;据说她身份高贵,却过着连仆人都不如的生活;......“你这种女人,娶了你真是前生造孽,今生不幸!”英俊的面孔扭作一团,自认玉树临风,风流倜傥,上官瑞星一直梦想着“绿衣捧砚催题卷,红袖添香伴读书”,谁料,两国通好,皇上赐婚,本想讲究一下,哪知对方竟是一个野蛮骄横,不可理喻的小女匪,可怜他满腹诗文,只能对牛弹琴。......“相公,你到底喜不喜欢她吗?”这个女匪不但不同文理,而且喜欢自作主张竟然要为他做媒纳妾。“我...我....”“不喜欢!好吧!反正云竹姑娘生得美丽端庄,温柔可人,不愁没人要!司徒大人不错!恩,慕容公子也不错!还有——”“够了!既然你这么喜欢替人牵红线,就随便吧!”“随便?呵呵呵呵,明白!明白”卓玛满脸怪笑,自以为心领神会。却没留意到他紧皱得眉头,以及额头上突起的青筋。
  • 变成天使去爱你

    变成天使去爱你

    他是她的救命恩人是他的再生父母是宠她如命的人也是她的命中注定,他是校园里女生们的男神是商业上商业天才是黑帮上神秘的教父级人物,在外人眼里他残忍对待人从来不讲情面更不要说是他有温柔的一面了他让人感觉是没有感情的生物,但是只有他知道他的温柔只是属于他的私有宝贝----------韩小陌
  • 阿琪

    阿琪

    阿琪是来自旧世界的一个陌生女子,有一天她联系到了我,紧接着一连串不可思议的事情发生了......
  • 遥远时空之拐个帅哥回家来

    遥远时空之拐个帅哥回家来

    郭小姐的牢骚:“该死的冰山脸,什么大皇子啊?!看不起人,讨厌死了!”“二皇子好酷、好帅、好有型哦哦哦!”“苏哥哥,谢谢你的帮助与陪伴!”“啊啊啊啊!臭小鬼,别再叫我猎物了,我不是你的猎物啊啊啊啊!”“连公子真的对不起!”
  • 狩魔高校

    狩魔高校

    丹青一卷,高校一所,被隐藏在繁华表面下的求仙狩魔之旅由此开启。学着奇葩的专业,在帝都狩猎狼人,在东京与喰种鏖战,最后还经历了一次诸神黄昏。就在我以为一切都要结束的时候,万恶的小师叔却把我拐进那片星空那片海!别问我小师叔是谁,你可能见过他吧……q群:562852398
  • 师之情

    师之情

    有的人一生会遇见多位师父,有的人可能一位都没有,而我却遇见了一位改变我的师父!
  • 三魂争霸

    三魂争霸

    三魂穿越为一体,英雄桃园四结义。天下大乱巨星起,敢把曹操当球踢。世间再无魏蜀吴,三国终究要归一。如若让我做了皇帝,良辰对诸位必有重谢!
  • 医妃倾城

    医妃倾城

    她是医术高明的现代穿越人,为了自保扮成无盐女,想借着医术发家致富奔小康,保护娘亲。却被势利的亲爹、阴险的后娘、娇宠的妹妹给推向了“火坑”。他是战无不克、攻无不胜的战神三王爷,大火烧伤成了面具男,从此后心性大变,嗜血冷酷,令人闻风丧胆。一场有预谋的替嫁,一场无盐女遇上了面具男好戏。
  • 末世之天使恶魔

    末世之天使恶魔

    她是天使,也是恶魔。当末世突然爆发,命运将会发生什么改变?所谓的功夫再高,也怕菜刀这一个道理,在巫冰语用菜刀砍死了第一只丧尸后,得到了验证。本文有些是爽文,不喜欢的在这里提醒一下。【更新时间请看“作者的话”】
  • tfboys之流星雨的泪

    tfboys之流星雨的泪

    情景一:“韩小陌,你既然来了,就别想走!”凯爷霸气的把小陌逼到了墙角,小陌满脸黑线地坐下来,说:“凯爷的命令,小陌不敢不从!在下一定留下!”情景二:“白然然!你怎么这么笨呢?吃个冰激凌都能吃得满嘴都是!”王源说着伸出手把她嘴边的冰激凌擦掉了。她倒是满脸倔强的说:“我又没说我很聪明啊!”情景三:“兮儿,你看这条项链好看吗?它是情侣的呢!”千玺把项链拿到苏沫兮面前,不过她倒是一点点也不开心,说:“千玺!我就比你小两岁,有必要天天喊得那么幼稚吗?!”她们走进了他们的生活,也走进了他们的心。但是风雨之后,还会有雨过天晴的彩虹吗?