登陆注册
7367200000004

第4章 数学之谜(4)

除了素数定理还有待探索之外,(1)中余项R的估计也是一个很难的问题,有不少人在研究它。

魅力无穷的完全数之谜

公元前3世纪时,古希腊数学家对数字情有独钟。他们在对数的因数分解中,发现了引起奇妙的性质,如有的数的真因数之和彼此相等,于是诞生了亲和数;而有的真因数之和居然等于自身,于是发现了完全数。6是人们最先认识的完全数。

1.发现完全教

研究数字的先师毕达哥拉斯发现6的真因数1、2、3之和还等于6,他十分感兴趣地说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”

古希腊哲学家柏拉图在他的《共和国》一书中提出了完全数的概念。

约公元前300年,几何大师欧几里得在他的巨著《几何原本》第九章最后一个命题首次给出了录找完全数的方法,被誉为欧几里得定理:“如果2“-1是一个素数,那么自然数2(上标2n-1)(2(上标n)-1)一定是一个完全数。”并给出了证明。

公元1世纪,毕达哥拉斯学派成员、古希腊著名数学家尼可马修斯在他的数论专著《算术入门》一书中,正确地给出了6、28、496、8128这四个完全数,并且通俗地复述了欧几里得寻找完全数的定理及其证明。他还将自然数划分为三类:富裕数、不足数和完全数,其意义分别是小于、大于和等于所有真因数之和。

2.神秘的第五个完全数

完全数在古希腊诞生后,吸引着众多数家和数学爱好者像淘金般去寻找。可是,一代又一代人付出了无数的心血,第五个完全数没人找到。

后来,由于欧洲不断进行战争希腊、罗马科学逐渐衰退。一些优秀的科学家带着他们的成果和智慧纷纷逃到阿拉伯、印度、意大利等国,从此,希腊、罗马文明一蹶不振。

直到1202年才出现一线曙光。意大利的斐波那契,青年时随父游历古代文明的希腊、埃及、阿拉伯等地区,学到了不少数学知识。他才华横溢,回国后潜心研究所搜集的数学,写出了名著《算盘书》,成为13世纪在欧洲传播东方文化和系统将东方数学介绍到西方的第一个人,并且成为西方文艺复兴前夜的数学启明星。斐波那契没有放过完全数的研究,他经过推算宣布找到了一个寻找安全数的有效法则,可惜没有人共鸣,成为过眼烟云。

光阴似箭,1460年,还当人们迷惘之际,有人偶然发现在一位无名氏的手稿中,竟神秘地给出了第五个完全数33550336。这比起第四个完全数8128大了4000多倍。跨度如此之大,在计算落后的古代可想发现者之艰辛了,但是,手稿里没有说明他用什么方法得到的,又没有公布自己的姓名,这更使人迷惑不解了。

3.不平凡的研究历程

在无名氏成果鼓励下,15至19世纪是研究完数不平凡的日子,其中17世纪出现了小高潮。

16世纪意大利数学家塔塔利亚小时曾被法国入侵者用刀砍伤舌头,落下了口吃的疾患,后来靠自学成为一位著名数学家。他研究发现:当n=2和n=3至39的奇数时,2(上标n)-1(2(上标n)-1)是完全数。

17世纪“神数术”大师庞格斯在一本洋洋700页的巨著《数的玄学》中,一口气列出了28个所谓“完全数”,他是在塔塔利亚给出的20个的基础上补充了8个。可惜两人都没有给出证明和运算过程,后人发现其中有许多是错误的。

1963年,数学家克特迪历尽艰辛终于证明了无名氏手稿中第五个完全数是正确的,同时他还正确地发现了第六个和第七个完全数2(上标16)(2(上标17)-1)和2(上标18)(2(上标19)-1),但他又错误地认为2(上标22)(2(上标23))-1、2(上标28)(2(上标29)-1)和2(上标36)(2(上标37)-1)也是完全数。这三个数后来被大数家费马和欧拉否定了。

1644年,法国神甫兼大数家梅森指出,庞格斯给出的28个“完全数”中,只有8个是正确的,即当n=2,3,5,7,13,17,19,31时,2(上标n-1)(2(上标n)-1)是完全数,同时又增加了n=67,127和257。

在未证明的情况下他武断地说:当n≤257时,只有这11个完全数。这就是著名的“梅森猜测”

“梅森猜测”吸引了许多人的研究,哥德巴赫认为是对的;微积分发现者之一的德国莱布尼兹也认为是对的。他们低估了完全数的难度。

1730年,被称为世界四大数家雄狮之一的欧拉,时年23岁,正值风华正茂。他出手不凡,给出了一个出色的定理:“每一个偶完全数都是形如2(上标n-1)(2(上标n)-1)的自然数,其中n是素数,2(上标n)-1也是素数”,并给出了他一直没有发表的证明。这是欧几里得定理的逆理。有了欧几里得与欧拉两个互逆定理,公式2(上标n-1)(2n-1)成为判断一个偶数是不是完全数的充要条件了。

欧拉研究“梅森猜想”后指出:我冒险断言:每一个小于50的素数,甚至小于100的素数,使2(上标n-1)(2(上标n)-1)是完全数的仅有n取3,5,7,13,17,19,31,41,47,我以一个优美的定理出发得到了这些结果,我自信它们具有真实性。”1772年,欧拉因过度拼命研究双目已经失明了,但他仍未停止研究,他在致瑞士数家丹尼尔的一封信中说:“我已经心算证明n=31时2(上标20)(2(上标31)-1)是第8个完全数。”同时,他发现他过去认为n=41和n=47时是完全数是错误的。

欧拉定理和他发现的第8个完全数的方法。使完全数的研究发生了深刻变化,可是,人们仍不能彻底解决“梅森猜测”。

1876年法国数学家鲁卡斯创立了一种检验素数的新方法,证明n=127时确实是一个完全数,这使“梅森猜测”之一变成事实,鲁卡斯的新办法给研究完全数者带来一机,同时也动摇了“梅森猜测”。因数家借助他的方法发现猜测中n=67,n=257时不是完全数。

在以后1883—1931年的48年间,数学家发现“梅森猜测”中n≤257范围内漏掉了n=61,89,107时的三个完全数。

至此,人们前赴后继,不断另辟新路径,创造新方法,用笔算纸录,耗时两千多年,共找到12个完全数,即n=2,3,5,7,13,17,19,31,61,89,107,127时,2(上标n-1)(2(上标n)-1)是完全数。

笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完全人亦非易事。”

历史证明了他的预言。

从1992年开始,人们借助高性能计算机发现完全数,至1986年才找到18个,多么可怜!

4.等待揭穿之谜

迄今为止,发现的30个完全数,统统都是偶数,于是,数学家提出猜测:存不存在奇数完全数。

1633年11月,法国数学家笛卡尔结梅森一封信中,首次开创奇数完全数的研究,他认为每一奇完全数必具有PQ(上标2)的形式,其中P是素数,并声称不久他会找到,可不仅直到他死时未能找到,而且至今,没有任何一个数学家发现一个奇完全数。这成为世界数论又一大难题。

虽然,谁也不知道它们是否存在,但经过一代又一代数学家研究计算,有一点是明确的。那就是如果存在一个奇完全数的话,那么它一定是非常大的。

有多大呢?远的不说,当代大数学家奥尔检查过要10(上标18)以下自然数,没有一个奇完全数;1967年,塔克曼宣布,如果奇完全数存在,它必须大于10(上标36),这是一个37位数;1972年,有人证明它必大于10(上标50),1982年,有人证明,它必须大于10(上标120);……这种难于捉摸的奇完全数也许可能有,但它实在太大,以至超出了人们能够用计算机计算的范围了。

对奇完全数是否存在,产生如此多的估计,也是数学界的一大奇闻!

关于完全数还有许多待揭之谜,比如:完全数之间有什么关系?完全数是有限还是无穷多个!存在不存在奇完全数?

人们还发现完全数的一个奇妙现象,把一个完全数的各位数字加起来得到一个数,再把这个数的各位数字加起来,又得到一个数,一直这样做下去,结果一定是1。例如,对于28,2+8=10,1+0=1;对于496有,4+9+6。19,1+9=10,1+0=1等等。这一现象,对除6外的所有完全数是否成立?

以上这些难题,与其他数学难题一样,有待人们去攻克。尽管我们现在还看不到完全数的实际用处,但它反映了自然数的某些基本规律。探索自然规律,揭开科学上的未知之谜,正是科学追求的目标。

经典趣昧名题

1.奇妙而重要的数列

由于研究兔子繁殖问题,引出了一个极为奇妙而重要的数列。

有位养兔专业户想知道兔子繁殖的规律,于是他围了一个栅栏把一对刚出生的小兔子关在里面。已知一对小兔子出生后两个月就开始生兔子,以后则每月可再生一对,假如不发生伤亡现象,满一年时,栅栏内有几对兔子呢?

2.《镜花缘》里的数学难题

著名小说《镜花缘》里有段故事:

元宵节,宗伯府的女主人卞宝云想考一考精通筹算的才女米兰芬,请她算一算楼房中灯的数目。她告诉米兰芬,楼上的灯有两种,一种上做三个大球,下缀六个小球,计大小球九个为一灯;另一种上做三个大球,下缀18个小球,计大小球21个为一灯。大灯球共396个,小灯球共1440个。楼下的灯也分两种,一种一个大球,下缀两个小球;另一种是一个大球,下缀四个小球,大灯球共360个,小灯球共1200个。她请米兰芬算一算楼上楼下四种灯各有多少个。米兰芬想了一想。先算楼下的,她将小灯球1200折半,得600,再减去大灯球360,得240,这是一大四小灯球的灯的盏数。然后用360减240,得120,这便是一大二小灯球的灯的盏数。再算楼上的,她先将1440折半,得720,减大灯球396,余324,再除以6,得54,这是缀十八个小球灯的灯的盏数。然后用3乘以54,得162,用396减162,得234,用234除以3得78,即下缀六个小球灯的灯78盏。卞宝云让人拿做灯的单子来念,果然丝毫不差。大家莫不称她为神算。

这个问题若引进未知数列出方程是很容易解决的。但米兰芬的神算法是从哪里来的呢?应该说,故事人物米兰芬是读了著名古书《孙子算经》。

《孙子算经》是我国古代一部较为普及的数学著作,在唐代初期用作“算学”的教科书。全书共分三卷,上卷叙述筹算的制度、方法和度量衡的单位;中卷举例说明筹算分数法,包括面积、体积、等比数列等计算题、应用题;下卷收集了不少有趣的名题、难题。书中对各种问题的解法很有特色,充分显示了中国筹算数学的特点。例如,下卷第31题是:

“今有鸡兔同笼,上有35头,下有94足,问鸡、兔各几何?”

对于“鸡兔同笼”问题,读者还可想出各种解法。例如,可以设想鸡、兔都是两只足,那么从35个头可知,应该只有70只足,但现在笼中实有94只足,两者相差24只,这是因为我们设想兔子只有两只足,每只少算两足,可见兔子数是12只。

“鸡兔同笼”问题是算术中一类典型问题,历代“算学”课本大都引用此题,但题目与解法不尽一样。例如,在元代的著作《丁巨算法》一书中,原题变成:

今有鸡兔100,共足272只,问鸡、兔各几何?

书中先设想全部是兔,那么100只兔该有400只足,但现在实际只有272只足,两者相差400—272=128只,这是把鸡设想当作兔时多计算的足数。每只鸡多算两足,可见鸡数就是128的一半,即64只;兔数为36只。

《孙子算经》对我国及一些外国的数学发展都有一定的影响。“鸡兔同笼”问题传到日本,变成了“鹤龟算”,改成这名词可能是因为日本人特别欣赏乌龟的缘故。

3.1分钱换10万元

从前国外有个贪财的大富翁,虽然已非常有钱,可是每天还在盘算着如何得到更多的钱。

一天,富翁在路上遇到一个衣着俭朴的年轻人,他连眼皮也没眨一下,就走了过去,年轻人自言自语地说:“1分钱换10万元总会有人干的……”富翁一听,急忙回头叫住年轻人:“喂,你说的换钱是怎么回事?”

年轻人很有礼貌地一鞠躬说:“先生,是这样的,我可以在一个月内,每天给你送来10万元钱,虽然不是白给,但是代价是微不足道的,第一天只要你付我1分钱。”

“1分钱?”富翁简直不敢相信自己的耳朵。

“对,是1分钱。”年轻人说,“第二天再给你10万元时,你要付两分钱。”

富翁急切地问:“以后呢?”

“第三天,付4分钱;第四天,付8分钱……以后每天付给我的钱数都要比前一天多一倍。”

“还有什么附加条件呢?”

“就这些,但我们俩都必须遵守协定,谁也不准反悔!”于是,两人签订了协定。

10万元换几分钱!真是难得的好事!富翁满回答应:“好!就这样。”

第二天一清早,年轻人准时到来,他说:“先生,我把10万元送来了。”随即从大口袋里掏出整整10万元,并对富翁说:“下面该你付钱了。”

富翁掏出一分钱放在桌子上,陌生人看了看,满意地放入衣袋说:“明天见。”说完走出门去。

10万元钱从天而降!天下最大的便宜事叫富翁遇上了,他赶忙把钱藏了起来。

第二天早晨,年轻人又来了,他拿出10万元,收下两分钱,临走时说:“明天请准备好4分钱。”

第二个10万元又到手了!富翁乐得手舞足蹈,心想这个年轻人又蠢又怪!世上这样的人要是多几个多好,我们这些聪明人就会发了还要发,变成举世无双的大富豪了。

第三天,年轻人用10万元换走了4分钱。

第四天换走8分钱,以后又是1角6分、3角2分、6角4分,七天过去了,富翁白白收入70万元,而付出的仅仅是1元2角7分,富翁真想把期限再延长些,哪怕多半个月也好呀!

年轻人照常每天送10万元来,第8天付给他1元2角8分,第9天付2元5角6分,第10天付5元1角2分,第11天付10元2角4分,第12天付20元4角8分,第13天付40元9角6分,第14天付81元9角2分。

14天过去了,富翁已经收入整整140万元,而付出的才150元多一点。

又过了一段时间,富翁慢慢感到年轻人并不那么简单了,换钱也不像最初想象地那样合算了,15天后,每收入10万元,付出的已是几百元了,不过,总的来说还是收入的多,支出的少。

可是,随着天数的增加,支出在飞速地增大,纯收入在逐日减少,第25天,富翁支出167772元1角6分,第一次超过了收入;第26天支出335544元3角2分,大大超过了收入;到了第30天支出竟达5368709元1角2分。

年轻人最后一次离开时,富翁连续算了一昼夜,终于发现:为了收入330万元,他付出了。10737418元2角3分,亏了近800万元,富翁失算了!

同类推荐
  • 遨游太空

    遨游太空

    本书阐述了航天器飞行原理和失重的生理影响,介绍了载人航天的发展历程,航天技术在民用及军事方面的应用,航天员的选拔与训练以及航天员的太空生活。
  • 培养孩子解决问题的探索故事(青少年心灵成长直通车)

    培养孩子解决问题的探索故事(青少年心灵成长直通车)

    本书系列从成长中可能遇到的问题出发,内容涵盖了勤奋、坚强、自信、乐观等诸多与孩子健康成长密切相关的方面,入选的故事通俗易懂,道理清晰明了,版式活泼多样,容易激发孩子强烈的阅读兴趣,能够起到极好的教育和熏陶作用,对于提高孩子的文化素养、拓展孩子的知识面大有帮助。《培养孩子解决问题的探索故事》(主编韩震)为该系列其中一册。《培养孩子解决问题的探索故事》收录了《宇宙中最神秘的谜团》、《贝多芬猝死之谜》、《英国王妃戴安娜死亡之谜》等小故事。
  • 法布尔与昆虫记

    法布尔与昆虫记

    我知道抓蝗虫是一件吸引孩子们的事情,所以我叫上了两个小孩子当我的助手,一块儿抓蝗虫。其中,那个男孩名叫小保尔,那个女孩叫玛丽。只见小保尔身轻如燕,手脚灵活,眼观六路,耳听八方,他在菊花簇里面看见了一只正在沉思的蝗虫。当他靠近时,蝗虫却如惊弓之鸟一样突然飞起。小保尔拼命地追,可是还是让它给跑了。玛丽就要幸运一些,她发现了一只蝗虫,然后举起自己的手,靠近,靠近,按下。哈,逮住了!
  • 中华传统美德百字经·宽:宽以待人

    中华传统美德百字经·宽:宽以待人

    一段历史之所以流传千古,是由于它蕴涵着不朽的精神;一段佳话之所以人所共知,是因为它充满了人性的光辉。阅读《中华传统美德百字经》系列丛书,感悟中华传统美德,获得智慧的启迪和温暖心灵的感动;品味中华美德故事,点燃心灵之光,照亮人生之路。
  • 会隐身的海草

    会隐身的海草

    本文以大海为背景,以海洋动物为中心,以童话故事为表现形式,为读者呈现出一个神秘莫测的海洋国度。本文在介绍海洋动物令人眼花缭乱的神奇本领时,不仅深层剖析了其中所包含的科学知识,还给读者讲述了许多做人的道理。
热门推荐
  • 谢谢你的陪伴,让我不再孤单

    谢谢你的陪伴,让我不再孤单

    “说真的,我很开心能够遇见你。”“如果哪一天你不见了,我一定会满世界的找你,因为我已经习惯了你在我身边,带给我快乐和幸福。”“所以,谢谢你的陪伴,让我不再孤单。”
  • 游走的岁月

    游走的岁月

    天上最美的是星星,人间最美的是真情。外表留给人的是印象,内心抒发的是情感。游走的岁月,不变的情怀。静守时光,以待流年。愿你开怀地笑,温柔地睡!
  • 重生之唐华

    重生之唐华

    【重生文,男女主身心干净,一生一世一双人。】她大概是大唐最倒霉的一个公主,在扬州痴等驸马八载,却迎来她“已亡”的消息,随之而来的竟然是她的驸马另娶她人,而新娘竟是她自幼爱护的异母妹妹!最后她中毒身亡,落得个家破人亡的凄惨结局!许是上天垂怜,让她重生到十岁。重新归来,她不再是前世那个懦弱任人欺负的公主,而是前来索命的恶鬼!
  • 人体健康密码全知道

    人体健康密码全知道

    本书在介绍身体构造奥秘的同时,提供相应的健康生活方式与疾病预防常识,内容包括决定我们活多少岁的遗传基因密码、破解人体意识和思维密码、揭示生活行为的内脏器官密码、男女身体密码大不同等。
  • 美女的忘情水

    美女的忘情水

    苏婉箐,孤儿院长大的清纯女生一枚,活泼可爱,拥有一颗善良的赤子之心,喜欢研究古董。实际上,她是英国贵族遗落在中国的混血小姐,遇上了冷酷无情的冷傲雷……
  • 墨青是条鱼

    墨青是条鱼

    和女朋友分手,明知道不可能了,可是就是放不下就想把这些故事写下来,其实也没什么故事,也希望大家不要犯我的错误,
  • 世界变奏曲

    世界变奏曲

    壮阔的宇宙,莫测的世界。人类在宇宙中的进步与挫折,见证了热血青年的奋斗史与成长史。进入真正的世界,是未来还是寂灭...
  • 虐渣系统:炮灰要翻身

    虐渣系统:炮灰要翻身

    沐挽歌用愤恨的目光看着某男:“洛康,你是故意让我扑倒的吧?”某男眨巴眨巴眼睛,无辜地说道,“沐沐,你说过你会负责的。”沐挽歌在看了某男果体后流鼻血晕了过去,醒来后却发现自己被某系统带到一个陌生的地方,“叮——恭喜玩家开启虐渣系统”沐挽歌从此过上了前往各个世界完成任务的苦逼生活……
  • 忧悠公主们的恋爱

    忧悠公主们的恋爱

    她们四个有着别样的气质:阳光温柔忧郁可爱直到遇见她们所“讨厌”的男孩……就这样恋爱的感觉在他们身边围绕着……公主和王子的爱情就此展开
  • 我的美女师姐之无所不能

    我的美女师姐之无所不能

    请看《我的美女师姐们》第二部《我的美女师姐之无所不能》叶小风是个没有工作的大学生,靠卖煎手抓饼为生。一次意外,他救了一个仙女。但同时,他也被倾玄派的美女看上了。仙女和美女,为了得到叶小风,展开了激烈的斗争。叶小风太幸福了,让桃花运来得更猛烈些吧,我能承受。